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Complete chaotic synchronization of end lasers has been observed in a line of mutually coupled, time-
delayed system of three lasers, with no direct communication between the end lasers. The present paper uses
ideas from generalized synchronization to explain the complete synchronization in the presence of long cou-
pling delays, applied to a model of mutually coupled semiconductor lasers in a line. These ideas significantly
simplify the analysis by casting the stability in terms of the local dynamics of each laser. The variational
equations near the synchronization manifold are analyzed, and used to derive the synchronization condition
that is a function of parameters. The results explain and predict the dependence of synchronization on various
parameters, such as time delays, strength of coupling and dissipation. The ideas can be applied to understand
complete synchronization in other chaotic systems with coupling delays and no direct communication between
synchronized subsystems.
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I. INTRODUCTION

Synchronized chaotic oscillations have been found in
many nonlinear systems, from lasers �1� to neural networks
�2�. Many types of synchronization have been observed, in-
cluding complete synchronization, phase-locking, and gener-
alized synchronization, in the case of unidirectionally
coupled systems. For an overview of the large body of work
done on synchronization, and its subclasses see, for example,
Refs. �3,4�. While extensive work has been done on mutually
coupled systems, general analytic techniques for analyzing
chaotic synchronization in time-delay mutually coupled sys-
tems have not been well developed. Essentially, there exist
two methods for analyzing synchronization in coupled sys-
tems: A Lyapunov function approach �5� and a master stabil-
ity approach �6�. Time delays considerably complicate the
analysis, possibly introducing infinite degrees of freedom,
and resulting in new types of dynamics �5�. The present pa-
per proposes an approach for understanding and predicting
chaotic synchronization of time-delayed mutually coupled
systems, possessing internal symmetry.

In the case of internal symmetry in a system, where the
equations of motion are invariant with respect to interchange
of some variables, there is a solution where these variables
are exactly equal �7�. For example, for the case of three
nonlinear oscillators coupled in a line, if the equations of the
outside oscillators are identical, then given the same initial
conditions, these oscillators will have identical dynamics, in-
cluding the possibility of chaotic solutions. In that case, the
system can be reduced to two coupled oscillators. If the sym-
metric solution is asymptotically stable to perturbations off
the synchronization manifold, then the dynamics of outside
oscillators are synchronized. Thus the requirement for syn-
chronization in the long time limit is that the largest
Lyapunov exponent, with respect to perturbations transverse

to the synchronization manifold, is negative, resulting in
decay of the initial perturbation back to synchronized state
�6�. In general, Lyapunov exponents must be calculated nu-
merically. However, as will be shown, an analytic estimate
can be made in some cases by linearizing about the synchro-
nous state.

Although there is extensive work on synchronization of
coupled systems, studies of chaotic synchronization in time-
delayed systems is much less extensive by comparison.
Some analysis exists on synchronization of coupled semicon-
ductor lasers without delays �7,8�. However, it remains to be
explained, for example, why in a coupled three laser system,
outer lasers show complete synchronization, in the presence
of long time delays �compared to the internal dynamics of
each laser� and no communication except via the middle la-
ser, which itself is not synchronized with the end lasers �9�.
�See Fig. 2 for an example.� The present paper aims to ex-
plain this phenomena observed in lasers and other time-
delayed systems using ideas from generalized synchroniza-
tion. The paper is organized as follows: In Sec. II, the
general equations for the three subsystems coupled by near-
est neighbor interactions with delays are introduced, and the
equations are linearized close to the synchronization mani-
fold, using internal symmetry. Section III uses synchroniza-
tion ideas developed in Sec. II to explain complete synchro-
nization of semiconductor lasers in the presence of long
delays and with no direct communication between the outer
lasers. Section IV concludes and summarizes.

II. LONG DELAYS AND GENERALIZED
SYNCHRONIZATION

We deal with mutually coupled, oscillatory time-delay
systems possessing internal symmetry, with respect to inter-
change of some variables. The system can be broken up into
three coupled parts as depicted in Fig. 1: the “center” and*Electronic address: alandsma@cantor.nrl.navy.mil
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two identical subparts, that possess symmetry with respect to
interchange of variables:

dz1

dt
= F„z1�t�… + �1G„z2�t − ��… , �1�

dz2

dt
= F̃„z2�t�… + �2G̃„z1�t − ��,z3�t − ��… , �2�

dz3

dt
= F„z3�t�… + �1G„z2�t − ��… , �3�

where zi are vector variables of some dimension M and N,
for the outer and the middle subsystem, respectively. Vari-
ables z1 and z3 are symmetric with respect to interchange of
variables, while the center system, z2 may have different

internal dynamics, given by F̃, and different coupling func-

tion G̃. The delay in the coupling terms is fixed and given by
�, and the strength of coupling from the center to the outer
identical subsystems by �1, while from the outer to the center
by �2. Due to internal symmetry of the system, there exists
an identical solution for the outside subsystems, z1�t�=z3�t�
=��t�. If the conditional Lyapunov exponents calculated
with respect to perturbation out of the synchronization mani-
fold, z1�t�=z3�t� are all negative, then the two outer sub-
systems are synchronized. This type of behavior where the
two systems show identical dynamics, even chaotic ones, is
called complete synchronization. Figure 2 shows an example
of complete synchronization in the case of a mutually
coupled three laser system using the model in Sec. III �10�.
Calculating Lyapunov exponents is in general complicated
due to the presence of time delays in the equations. The
coupling term containing delays, however, drops out if Eqs.
�1� and �3� are linearized about the synchronous state:
z1�t�=z3�t�. To study the stability of the symmetric solution,
we introduce new variables, �z1�t�=z1�t�−��t� and
�z3�t�=z3�t�−��t�. Linearizing transverse to the synchroni-
zation manifold,we have

d � z1�t�
dt

= J · � z1�t� , �4�

d � z3�t�
dt

= J · � z3�t� , �5�

where J is the M�M Jacobian matrix of partial derivatives
evaluated at ��t�,

J =
�F„��t�…

�z
. �6�

Here ��t� is the synchronous state that is determined by
the dynamics of Eqs. �1�–�3� and the initial conditions de-
fined on �−� ,0�. Although the time delays and dependence
on z2 drop out of Eqs. �4� and �5�, they are involved implic-
itly in determining ��t�, the synchronization manifold. Equa-
tions �4� and �5� are M-dimensional and therefore have M
transverse Lyapunov exponents. The largest of them deter-
mines the stability of the transverse perturbation. So that the
synchronized state z1�t�=z3�t�=��t� is asymptotically stable,
if �z1,3�t�→0 as t→� or if all of the Lyapunov exponents
in the linearized equations are negative.

For �2=0, in Eq. �2�, the dynamics of z1,3 become that
of a driven system, with z2 acting as the driver. Then,
the synchronized dynamics correspond to generalized
synchronization �11� whereby the driven subsystem becomes
a function of the driver, ��t�= f���. Here, � are the
dynamics of the driver obtained by integrating Eq. �2�, with
�2=0, d��t� /dt= F̃(��t�).

While the exact form of the function between the driver
and the driven systems can be rather complicated and diffi-
cult to obtain, its existence can be inferred from the synchro-
nization of identical systems when started from different ini-
tial conditions and being exposed to the same drive. This
method of detecting generalized synchronization using iden-
tical driven systems is known as the auxiliary systems ap-
proach �12�. In order for the driven subsystems, z1,3 to be-
come synchronized, their dependence on initial conditions
must “wash out” as a function of time. This is due to the fact
that dependence on initial conditions prevents synchroniza-
tion by making the dynamics of z1 different from the dynam-
ics of z3. This “washing out” of initial conditions is provided
by the dissipation in the system, which must therefore be
either present in the coupling term, or in the uncoupled
dynamics of the system itself. This can be seen by taking the
sum of Lyapunov exponents, for Eqs. �4� and �5�, which is
related to contraction or expansion of the phase-space
volume of the dynamics transverse to the synchronization
manifold �13�,

FIG. 2. �Color online� Top: Intensity of laser 1 vs laser 2. Bot-
tom: Laser 1 vs laser 3. Straight line indicates complete synchroni-
zation of outer lasers. �=30, �=�0.001, �1=�2=6.5�.

FIG. 1. A schematic showing how three lasers are coupled in a
line. The outer two lasers �circles� are identical, while the middle
laser �square� is detuned from the rest.
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�
j=1

M

� j = lim
t→�

1

t
ln�det„���z1,3��t�…� , �7�

where � is the fundamental matrix solution to Eqs. �4� and
�5� From Eq. �7�, negative Lyapunovs exponents sum corre-
sponds to a contraction of phase space of �z1,3 dynamics as
a function of time. In the case of synchronization in driven
identical systems, all Lyapunov exponents transverse to the
synchronous solution must be negative. Thus there is a con-
traction of phase space to a single trajectory that is a function
of the dynamics of the driver, �. This shrinking of phase
space is either caused by dissipative coupling or dissipation
in the driven systems themselves. The effect of dissipation
on synchronization can be illustrated using the case of a
simple driven system,

dx

dt
= − �x + ��t�,

dy

dt
= − �y + ��t� �8�

taking the difference between the two variables, �=x−y,
we get, d� /dt=−��, where ��t� in Eq. �8� is the chaotic
signal provided by the driver �it can also be a noisy signal�
�3,14�. Thus the difference in initial conditions between x
and y decreases at the rate of dissipation, �, leading to
synchronization for large times.

In mutually coupled systems, �2�0, the dynamics of z2
are affected by z1 and z3. In this case, the synchronized state,
��t�, may depend on the initial conditions of all of the three
subsystems, �z1 ,z2 ,z3	, so that ��t� cannot be the result of
generalized synchronization, in a strict sense. However, it
takes a time interval of 2� for any change in the dynamics of
systems z1,3 to affect the motion of these systems via mutual
coupling. During this time interval of length, 2�, z1,3 can be
viewed driven by z2, since the signal z1,3 receives during that
time interval is not affected by its dynamics on that interval.
Therefore, we examine the dynamics in a time period on the
order of the delay time, �.

The initial dynamics of z1,3�t� on the time interval
t0	 t
 t0+�, affect the dynamics of z1,3�t� on the time
interval t0+2�	 t
 t0+3� via the mutual coupling term,
G(z2�t−��) �see Eqs. �1� and �3��. For chaotic systems, the
trajectories are not correlated in time, and we assume


zi�t� · zi�t − t0�� � 0 �9�

for i= �1,2 ,3	 and t0 significantly longer than the average
period of oscillation. The above equation is true, in general,
for nonperiodic oscillations. This can be seen by expanding
the signal in a Fourier series, zi�t�=�n=−�

� An cos�nt+��.
Then, if there is a significant periodic component in zi�t� of
amplitude An, Eq. �9� will be proportional to An

2 whenever t0
is a multiple of 2� /n. Thus, for example, Eq. �9� may not
hold if the amplitude of an optoelectronically coupled laser
�to be discussed in the following section� is too close to the
threshold, where the behavior can be approximated as
coupled linear oscillators �see Eqs. �10�–�12��, leading to a
significant regular oscillatory component in the signal. In this
case, there may be a resonant interaction between the lasers,
which is sensitive to the specific value of the coupling delay,
�. For chaotic dynamics, we can substitute t0=2� into Eq.

�9�, where � is the delay, to see that there is no significant
correlation between the dynamics on that time scale, so that
over the round-trip time of 2�, the identical subsystems z1,3
can be viewed as driven by some uncorrelated chaotic signal
coming from z2. This assumption of a driver is only strictly
valid on the time interval within the round-trip time, since
for longer time intervals the initial conditions of the outer
lasers at the beginning of the interval will affect their dynam-
ics, via the middle system, at a later time within the interval.

By perturbing the dynamics of the outer subsystems from
the synchronized state, it can be shown that complete syn-
chronization of the end subsystems in the presence of long
delays is similar to generalized synchronization, where the
middle subsystem acts as the driver for the outer ones. After
the symmetric subsystems synchronize, z1,3�t�=��t�, one of
them can be suddenly perturbed from its symmetric state to
an arbitrary position in phase space at some t= t1. In that
case, the perturbed system, as well as the unperturbed one,
will receive the exact same signal from z2 as before, for
t
 t1+2�. If the systems synchronize again at some point
during t
 t1+2�, we will again have z1,3�t�=��t�, where ��t�
has not been affected by the perturbation during that time
interval. Thus the synchronized state, ��t�=z1,3�t� is clearly
independent of perturbations of subsystems z1,3 and must
therefore be some function of the middle subsystem, z2. This
however is the same as what happens in generalized synchro-
nization, with the difference that the trajectory of z2 itself
may be affected by the initial starting conditions of the sym-
metric subsystems. The following section uses a system of
semiconductor lasers as an example for application of these
ideas to understand complete synchronization of the end
lasers in a three laser system.

III. SYNCHRONIZATION OF SEMICONDUCTOR LASERS
WITH DELAYS

The discussion of the preceding section can be applied to
the study of synchronization of a three laser system with
delays. A schematic diagram is shown in Fig. 1, where the
outer lasers are identical, while the middle laser is detuned.

The scaled equations of coupled semiconductor lasers
have the following form �15,16�:

dy1

dt
= x1�1 + y1� ,

dx1

dt
= − y1 − �x1�a1 + b1y1� + �2y2�t − �� , �10�

dy2

dt
= �x2�1 + y2� ,

dx2

dt
= ��− y2 − ��x2�a2 + b2y2�� + �1�y1�t − �� + y3�t − ��� ,

�11�
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dy3

dt
= x3�1 + y3� ,

dx3

dt
= − y3 − �x3�a1 + by1� + �2y2�t − �� . �12�

Equations �10�–�12� have the same form as Eqs. �1�–�3� with
zi= �yi ,xi	, where i=1,3 and i=2 for the outer and middle
lasers, respectively. Variables yi and xi denote scaled inten-
sity and inversion of the ith laser, �a1 ,a2 ,b1 ,b2	 are loss
terms, and � is the dissipation. �See Ref. �17� for details of
the derivation from the original physical model.� The above
equations are coupled via laser intensities, yi, using optoelec-
tronic incoherent coupling that does not contain electric field
phase information, unlike the coherent coupling by Fischer et
al. �9�. Previously, the dynamics of two electronically
coupled lasers have been explored �18�, showing lag syn-
chronization for the case of two lasers, and isochronal syn-
chronization if feedback is added �19�. The above equations
are scaled so that the relaxation frequency is equal to 1. In
the typical experimental setup, the relaxation oscillations are
on the order of 2–3 ns. Since the delay time is scaled by the
relaxation frequency, and is at least an order of magnitude
higher �for long delays�, a typical delay time used in simu-
lations could be about �=60, which corresponds to about
20–30 ns.

In the absence of dissipation, the uncoupled system,
�1=�2=0, is a nonlinear conservative system, with behavior
similar to a simple harmonic oscillator for small amplitudes,
and becoming more pulselike at high amplitudes �17�. Dissi-
pation, however, leads to energy loss, so that in the absence
of coupling between lasers, the dynamics would settle into a
steady state. Thus mutual coupling acts like a drive by pump-
ing energy into the system. For most cases, it can be assumed
that dissipation is small, ��1. Detuning of the middle laser
from the outer ones is given by �.

The system described by Eqs. �10�–�12� shows complete
synchronization of outer lasers over a whole range of param-
eters. Figure 2 shows that while the outer lasers can become
completely synchronized, there may be no apparent correla-
tion between the middle and the outer lasers. Since the outer
lasers are identical, there is a solution of Eqs. �10�–�12�
where y1=y3=Y�t� and x1=x3=X�t�. In this case, Eqs.
�10�–�12� reduce to four differential equations. The solution
y1=y3 and x1=x3 is stable if the Lyapunov exponents trans-
verse to the synchronization manifold are negative. To inves-
tigate the stability of the synchronized state we linearize
about the synchronous solution ��t�= �X�t� ,Y�t�	. Applying
Eqs. �4�–�6� to Eqs. �10� and �12�, we obtain

� ẋ1,3

� ẏ1,3
� = − ��a1 + b1Y�t�� − 1

1 + Y�t� X�t�
��x�t�1,3

�y�t�1,3
� , �13�

where ��x�t�1,3 , �y�t�1,3	 are perturbations of outer oscilla-
tors from the synchronous state �X�t� ,Y�t�	. This synchro-
nous state is obtained by starting the outer oscillators from
the same initial conditions and perturbing the system at some
time, t= t1. The perturbation will not affect the coefficient
matrix in Eq. �13� until t t1+2�. So that in the time interval

of 2� the dynamics off the synchronization manifold can be
viewed as driven by an uncorrelated chaotic signal
�X�t� ,Y�t�	. We can now apply Abel’s formula �13� to Eq.
�13�, which relates the Wronskian of the linearized system to
the trace of the matrix �20�. Dropping the subscripts on
linearized variables, we get,

W�t� = det��x �y

�̇x �̇y
� = exp�

t1

t

�X�s� − ��a1 + b1Y�s��	ds� .

�14�

The Wronskian gives the phase-space volume dynamics
of the system ��x�t� , �y�t�	. Equation �14� is valid over
the integration interval of 2 times the delay, t1
 t
 t1+2�.
This is due to the fact that it takes a time interval of 2� for a
perturbation in the outer laser to affect its dynamics via
mutual coupling from the middle laser. Thus, during the
time interval of 2�, the perturbed system acts like a driven
system in that its dynamics do not affect the signal it re-
ceives, and therefore do not change the synchronized state,
�X ,Y	, making it independent of ��x , �y	 dynamics over
the integration interval.

Since the variable Y�t� is the scaled intensity of the laser,
from Eqs. �10�–�12�, its minimum possible value is −1. Thus
for a1�b1 �a typical case�, the contribution of the dissipation
term to the Wronskian is always negative. The variable X�t�,
on the other hand, is symmetric about zero, and thus aver-
ages out to zero when integrated over a single period of
oscillation. It follows that if the integral in Eq. �14� is taken
just over a single oscillation of the laser, we obtain

�
t1

t1+T

�X�s� − ��a1 + b1Y�s��	ds = − ��a1 + b1Ȳ�T 
 0,

�15�

where T is the period of a single oscillation, and Ȳ is the
average of Y over a single period �unlike X, the Y variable is
not symmetric about zero, which can readily be seen in the
pulselike fluctuations of lasers at high intensities�. It follows,
that X�s� in Eq. �14� averages out to zero if the integral is
done over many periods of oscillation, while the dissipation
term, multiplied by �, provides a continuous negative com-
ponent. If that continuous negative component builds up suf-
ficiently over the integration interval to overcome any fluc-
tuations in X�s�, we then have a continuous shrinking of the
phase space of perturbed dynamics, indicating synchroniza-
tion. Integrating the exponential term in Eq. �14� over many
oscillations and using Eq. �15�, we obtain

�
t1

t

�X�s� − ��a1 + b1Y�s��	ds � − ��a1 + b1Ȳ��t − t1�

+ �
t1+nT

t

X�s�ds , �16�

where t− t1 is the total integration interval, Ȳ is the average
value of intensity over that interval, and n on the integration
limits is the total integer amount of full oscillations that fit
into the integration period, t− t1−nT
T. Here, T is the av-
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erage period of oscillation over the integration interval. Thus
the integral of X�s� on the right-hand side is only over a
single uncompleted oscillation. This integral, however, may
still be significant compared to the � term, since its fluctua-
tions are comparable to X�s�, because the integration period,
T, is of order unity �due to scaling in the equations�, while �
multiplying the other term is small. It follows that suffi-
ciently long integration times, t− t1, are required in order for
the dissipation term to dominate. We can now set an upper
bound for the integral on the right-hand side of Eq. �16�,

�
t1+nT

t

X�s�ds 
 ��X�t��max, �17�

where �X�t��max is the maximum fluctuation of inversion over
the interval of 2 times the delay time. The above bound may
not be valid at energies far above the threshold, when the
laser behavior becomes pulselike with a period that is sig-
nificantly longer than the scaled relaxation period of 2�.
This may be another reason why there is a loss of synchro-
nization at higher coupling strengths, which lead to higher
amplitudes of oscillation, with lower frequencies. Requiring
Eq. �16� to be less than zero and using Eq. �17�, we can now
obtain a bound above which the dynamics tend toward the
synchronization manifold over the interval of 2 times the
delay time,

2

�
���a1 + b1Ȳ� � �X�t��max, �18�

where we have used 2�= t− t1 for the integration interval.
The above inequality insures the right-hand side of Eq. �16�
is negative over the interval of 2 times the delay time. This in
turn ensures the shrinking volume of transverse phase-space
dynamics given by Eq. �14�.

Equation �18� gives a condition for the phase-space vol-
ume of transverse dynamics to contract over the interval of 2
times the delay. For sufficiently long delays, where

���a1+b1Ȳ�� �X�t��max, Eq. �14� can be approximated as

ln�W�t�� = ln� � x�̇y − � y�̇x� � − �
t1

t

��a1 + b1Y�s��ds .

�19�

where a natural log of W�t� was taken. The above equation is
a monotonically decreasing function of t. This means that the
phase-space volume of the system perturbed from the syn-
chronization manifold contracts as a function of time. Apply-
ing Eq. �7� to Eq. �19�, where det(���z1,3�)=W�t�, the sum
of transverse Lyapunov exponents for the dynamics off the
synchronization manifold described by Eq. �13� can now be
approximated as

�1 + �2 � − ��a1 + b1Ȳ� . �20�

Equation �20� indicates that for sufficiently long integration
times �requiring sufficiently long delays�, the sum of the
Lyapunov exponents should be negative, indicating the
shrinking of phase-space volume of dynamics transverse to
the synchronization manifold.

Figure 3 shows numerically computed sum of Lyapunov
exponents, and corresponding correlations of the outer lasers,
as a function of dissipation, �, for two values of the delay,
�=120 and �=240. The fluctuations in the sum of Lyapunov
exponents correspond well to the fluctuations in the correla-
tion function of the outer lasers, with desynchronization
when the Lyapunov sum increases above zero. As might be
expected from Eq. �18�, longer delays mean synchronization
at lower values of dissipation, since the dissipation term in
the exponential in Eq. �14� dominates for sufficiently long
delays. Increasing � by a factor of 2, however, does not de-
crease the bifurcation value of � for the onset of synchroni-
zation by a factor of 2, as might be expected from Eq. �18�.
This is probably due to the decrease in fluctuations, �X�t��max,
as the dissipation in the system is increased, leading to syn-
chronization at a lower value of � than might otherwise be

FIG. 3. �Color online� �a� Sum of Lyapunov exponents as a
function of dissipation, �, for �=120. �b� Corresponding correla-
tions between outer lasers, �=120. �c� Sum of Lyapunov exponents
vs �, for �=240. �d� Corresponding correlations between outer la-
sers, �=240. In all cases, a1=a2=2, b1=b2=1, �1=�2=0.2, �=0.5.

COMPLETE CHAOTIC SYNCHRONIZATION IN MUTUALLY… PHYSICAL REVIEW E 75, 026201 �2007�

026201-5



expected. After Eq. �18� is satisfied, resulting in the onset of
synchronization, the sum of Lyapunov exponents has a nega-
tive linear dependence, given by Eq. �20�. This is in agree-
ment with Fig. 3 which shows this negative linear depen-
dence of Lyapunov sum on dissipation, with a slope of
around −2.6, a reasonable value for the parameters used of

a1=2, b1=1 and intensity, Ȳ �1. In general, the average in-

tensity of the dynamics, Ȳ, depends on the coupling
strengths, �1, and �2.

While Eqs. �19� and �20� predict the shrinking of
phase space for the dynamics transverse to the synchroniza-
tion manifold, to guarantee stability both Lyapunov
exponents must be negative, or the solution will blow up
along the unstable direction. To find out whether the syn-
chronous state is stable, consider again the Wronskian,

W�t�= �x�̇y− �y�̇x. Substituting for �̇x and �̇y from Eq.
�13�, we get

W�t� = �1 + Y�t����x�2 + ��y�2 + ���a1 + b1Y�t��

+ X�t�	 � x � y . �21�

In Eq. �19�, W�t� is a monotonically decreasing function of
time, with W�t�→0 as t→�. Therefore both �x , �y→0 as
t→�, due to the presence of terms quadratic in �x and �y
in Eq. �21�. It follows that for sufficiently long delays in the
system, the synchronized state is stable, and therefore all the
Lyapunov exponents transverse to the synchronization mani-
fold are negative. The stability of synchronized state is due
to cross-terms in the matrix in Eq. �13�, which come from
rotation, leading to the nonlinear exchange of energy be-
tween inversion and intensity of the laser. This rotation in-
troduces terms quadratic in �x and �y into Eq. �21� and
leads to the spiraling of the phase-space volume towards
zero, rather that blowing up along one direction, while
shrinking along another.

Figure 4�a� shows the sum of Lyapunov exponents as a
function of delay. The Lyapunov exponents are negative for
all ��170 �corresponding to about 60 ns� resulting in com-
plete synchronization of the outer lasers, as shown in Fig.
4�b�. At the same time, the outer lasers are not synchronized
with the center one, Fig. 4�c�. The fluctuations in correlations
of the outer lasers match well the fluctuations in the
Lyapunov sum, with correlations increasing whenever the
Lyapunov sum decreases. Figure 4 agrees well with the
above analysis, since sufficiently long delays �see Eq. �18��
are needed for the Lyapunov exponents to become negative,
leading to synchronization. After the onset of synchroniza-
tion, Eq. �20� becomes valid, so that the Lyapunov sum be-
comes independent of delays. This is confirmed by the
straight horizontal line in the figure, after the outer lasers
synchronize. The degree of synchronization is given by the
correlations function.

From Eq. �20�, the negative Lyapunov exponents, leading
to stability of synchronous state, are the result of dissipation,
�, in the end lasers. This is to be expected since mutual
coupling pumps energy into the system, as can be seen in
Eqs. �10�–�12�. Therefore, some dissipation in the outer sub-
systems themselves is essential in order to “wash out” their

dependence on initial conditions and make them a function
of the dynamics of the middle laser, as would be required in
the case on complete synchronization.

The amplitude of laser oscillations depends on the cou-
pling strengths, �1 and �2, as well as the dissipation. It was
shown �15� that in the case of a two laser system there is a
bifurcation value for the onset of oscillations that is a func-
tion of product of the coupling strengths, �1�2. Increasing the
coupling strengths increases the role of nonlinearities in the
system and the intensity of laser oscillations. Thus for low
values of the coupling strengths, the dynamics given by Eqs.
�10�–�12� are more regular. At low intensities, the dynamics
of individual lasers are close to that of a simple harmonic
oscillator, as can be verified by substituting low values of
�x1 ,y1	 into Eq. �10�, for example. In order for Eq. �9� to be
valid, the dynamics must be uncorrelated over the time inter-
val of the delay. Thus the equations derived in this section
are valid for chaotic regime which requires sufficiently high
product of coupling strengths, �1�2. In this case, it can be
assumed that the outer lasers are driven by an uncorrelated

FIG. 4. �Color online� �a� Numerically computed sum of
Lyapunov exponents as a function of delay, �. �b� Corresponding
correlations of outer lasers. �c� Correlations of the middle and outer
lasers, shifted by the delay time to maximize correlations.
�=�0.001, �1=�2=7.5�, �=0.5.
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signal from the middle laser over the time interval of 2�. Any
synchronization on that interval would then be analogous to
generalized synchronization that occurs in a unidirectional
system, with the middle laser acting as the driver for the
outer ones. Since increased coupling pumps more energy
into the system, thereby increasing the effect of nonlineari-
ties, the Lyapunov exponents may increase above zero, lead-
ing to desynchronization of the outer lasers. In this case,
longer delays in coupling may be required in order for the
outer lasers to synchronize. This effect is illustrated in Fig. 5,
which shows the sum of Lyapunov exponents as a function
of coupling strengths for two different delays, �=60 and
�=120. There is an abrupt increase in Lyapunov exponents
above zero, due to increased nonlinearity, as the coupling
strength is increased. Increasing the delay however to
�=120 leads to synchronization for a greater range of cou-
pling strengths, as compared to �=60. The corresponding
correlations as a function of coupling strengths are shown in
Fig. 6. Desynchronization at higher coupling strengths, and
the synchronizing effect of increased delays is in agreement
with Eq. �18�. Since higher coupling strengths lead to greater
fluctuations in X�t�, as well as a slower period of oscillation,
longer integration times are required in order for Eqs. �19�
and �20� to be valid, leading to synchronization at longer
delays, �.

Figures 3–6 show that Eq. �20� correctly predicts the in-
dependence of Lyapunov sum on delays and coupling
strengths and a negative linear dependence on dissipation,
once synchronization sets in. Synchronization, on the other
hand, occurs once the condition expressed in Eq. �18� is sat-
isfied, leading to the continuous shrinking of the phase-space
dynamics transverse to the synchronization manifold.

IV. CONCLUSION

Ideas from generalized synchronization were used to ex-
plain complete chaotic synchronization of mutually coupled

systems in the presence of long delays. Since identical outer
subsystems synchronize due to a common input from the
middle subsystem, complete synchronization is similar to the
one occurring in the auxiliary system setup, with the excep-
tion that all subsystems are mutually coupled. This leads to
the dependence of common input to the outer subsystems on
history of the dynamics. Complete chaotic synchronization is
the result of the outer systems becoming a function of the
middle one, as would happen in the case of generalized
synchronization.

Due to the symmetry of the outer subsystems, the dynam-
ics linearized about the synchronization manifold are inde-
pendent of explicit coupling. Transverse Lyapunov expo-
nents can then be calculated to determine the stability of the
synchronous state. Since over the time scale of 2 times the

FIG. 5. �Color online� �a� Sum of Lyapunov exponents as a
function of coupling strength, �1=�2, for �=60. �b� �=120. �
=�0.001, �=0.5.

FIG. 6. �Color online� Correlations corresponding to Fig. 5. �a�
Correlation between the middle and one of the outer lasers, �=60.
�b� Correlations of outer lasers, �=60. �c� Correlation between the
middle and one of the outer lasers, �=120. �d� Correlations of outer
lasers, �=120. Outer lasers synchronize for greater range of cou-
pling strength as the delay is increased. The middle and the outer
lasers show little correlation for all values of the coupling strengths.
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delay interval, the outer subsystems can be viewed as driven
by a common chaotic signal from the middle subsystem, the
analysis is considerably simplified, allowing for calculation
of phase-space volume dynamics transverse to the synchro-
nization manifold. The transverse phase-space volume
dynamics were analyzed for the case of three mutually
coupled semiconductor lasers. It was found that for suffi-
ciently long delays, the synchronized state is stable. The sum
of Lyapunov exponents transverse to the synchronization
manifold was found analytically and shown to have a nega-
tive linear dependence on dissipation, in good agreement
with numerical calculations. This also confirmed the intuition
that synchronization is the result of dissipation, � in local
dynamics of the lasers themselves, since the coupling be-
tween lasers is not dissipative. The analysis also explains the
effect of various parameters on synchronization, such as cou-

pling strengths, delay time, and dissipation, and is supported
by numerical simulations over a range of parameter values.
Thus, it was shown analytically and confirmed numerically
that after the onset of synchronization, the stability of the
synchronous state �as given by Lyapunov exponents� de-
pends linearly on dissipation, but is independent of the delay
time and coupling strength.
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